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A Pair of Hybrid Symmetrical

Condensed TLM Nodes
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Abstract— This letter reports the development of a new time-

domain hybrid symmetrical condensed TLM node. The new node
can accommodate a graded mesh and model lossy anisotropic
media described by diagonal tensors. The generalisation of an

existing hybrid node to accommodate anisotropic media is also
presented. The two hybrid nodes are complementary and pro-

vide the same computational advantages over the symmetrical

condensed node originally proposed by Johns [1].

I. INTRODUCTION

I N A HYBRID symmetrical condensed node (HSCN), the

characteristic impedance of the link lines are varied to

account for mesh grading and to model certain properties of

the medium. This has the desirable effect of reducing the total

number of stubs required by a generalised SCN and, in certain

instances, increasing the TLM time step compared to the stub-

loaded SCN originally proposed by Johns [1]. The maximum

TLM time step for the HSCN’s is related to the minimum node

dimension while the maximum TLM time step using Johns’s

SCN is dependant on the ratio of the largest to the smallest

grid dimension. The disadvantage of a hybrid node is that

scattering may take place at the connection between link lines

of neighboring nodes.

A parallel 2-D graded hybrid node was originally proposed

by A1-Mukhtar and Sitch [2], and the first 3-D HSCN was

reported by Scaramuzza and Lowery [3]. In both A1-Mukhtar

and Scaramuzza’s nodes, the characteristic admittance of the

link lines model the permeability of the medium and parallel

open-circuit stubs are used to model the permittivity; this type

of node will be referred to as a type I HSCN. Alternatively,

the characteristic impedance of the link lines could be varied to

model the permittivity of the medium and series short-circuit

stubs could be used to model the permeability; this type of

node will be referred to as a type II HSCN. In this paper,

the development of a generalized type II HSCN is presented,

the type I HSCN is extended to include anisotropic media,

and numerical results obtained using the time domain TLM

method compare the two HSCN’S, Johns’s SCN [1], [4], [5]

and analytic solutions.

II. FORMULATION

Both HSCN’s presented in this paper share the geometry and

the numbering scheme of the node given in [1], [4], [5]. The

scattering of the voltage pulses at the center of the HSCN’s

is represented by the matrix Sti given at the bottom of the
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next page. The elements of this matrix are obtained using the

technique presented in references [6], [7], [8] and are given

below for both HSCN’S.

A. Type I Hybrid Symmetrical Condensed Node

The type I HSCN models a diagonal permeability tensor

via the distributed inductance of the link lines, while the

distributed capacitance is chosen such that time synchronism

is maintained throughout the mesh. The characteristic admit-

tance of the link lines thus become a function of both the

permeability to be modelled and the grading of the mesh:

AIAz
Y. = Yy =

AIAV ALAZ

LLxx,rAyA. ‘ ,LLYY,TAZAZ‘ ‘z = pzz,TAzAv

(1)

The normalized characteristic admittance Y. is associated with

lines 4, 8, 5, and 7; Yv with lines 2, 9, 6, and 10 and Y, with

lines 3, 11, 12, and 1.

The additional capacitance required to model the permittiv-

ity tensor is provided via the open-circuit stubs that couple to

the electric field. The normalized characteristic admittance of

these stubs are:

AYAZ
Yoz = 4EZZ,T— – 2A1

(

Ay A,

AIA. pyy,TAzAz + pzz,vAzAy )
(2)

AZAZ
Yoy = 4Eyy,T— – 2A1

(

A. Az

AIAy
+

LL..,rAyAZ ,LL.Z,rA.Ay )
(3)

AZAY
Yoz = 4Ezz,.— – 2A1

(

A= Ay

AIAz
+

LLzz,rAyAz /.Lyy,rAzAz )
(4)

The elements of SW are found to be:

~b _d ~b
aP!l = yv PfJ pql % = yrPq+dP@

kpq = epq = bpq =
2Y.

Yop + GOP + 2(YT + Yq)

dpq = 2
4 + YqRsq

Yo ~ = Yop – Gop – 2(Y, + Yq)
lpq = gpq = ~bpw m

Yop + Gop + 2(Y. + Yq)

–Y%q — qRsqdpq, fpq = ipq = .iPq= npq = o

The type I HSCN reduces to the node given in [9] if the

medium is isotropic and to the node given in [3] if the medium

is both isotropic and magnetically lossless.
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B. Type II Hybrid Symmetrical Condensed Node

The type II HSCN models a diagonal permittivity tensor

via the distributed capacitance of the link lines, while the

distributed inductance is chosen such that time synchronism is

maintained throughout the lmesh.The characteristic impedance

of the link lines thus become a function of both the permittivity

to be modelled and the grading of the mesh. They can be ob-

tained from (1) by making the following textual substitutions:

Y ~ Z and ~ ~ c. The normalized characteristic impedance

2$ is associated with lines 1, 12, 2, and 9; ZY with lines 4, 8,

3, and 11 and Zz with lines 6, 10, 5, and 7.

The additional inductance required to model the permeabil-

ity tensor is provided via the short-circuit stubs that couple to

the magnetic field. The normalized characteristic impedance of

these stubs are obtained frclm (2)–(4) by making the following

textual substitutions: Yo –~ 2s, c ~ ~ and y ~ e.

The elements of S. are found to be:

apq = bpq – dp,Y, cpq = bpq + dpq – 1
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C. Commonalities

For both HSCN’s, the indices p, q, T“are defined as: p, q, r c

{z, y, z} and r # p, q where $, y, z are subscripts of the

elements of Su. The length Al is chosen as the minimum

of all node dimensions Al = mi7t{A~, Av, As }t;,~,~); this

will ensure that all open- or short-circuit stubs have a positive

characteristic admittance or impedance. The time step for both

HSCN’s is dependant on the minimum mesh dimension Al

and not on the ratio of the largest to the smallest grid spacing,

which sometimes leads to prohibitively small time steps [3].

Assuming that the grading is constant throughout the structure,

then scattering at the connection between link lines will not

occur in the type I HSCN if the permeability is constant or,

in the type II HSCN, if the permittivity is constant.

Parallel and series matched stubs are used to model the

electric and magnetic losses of the medium. The normalized

characteristic admittance of the parallel loss stubs are:

AYAZ 1
Go. = oex —

AZAZ 1
—, Gol, = oeY—

AZ YO AY ~

AZA 1
GOZ = ~eZ—~ —

A,, YOkpq = br,q =
2

4 + ZPGOP
The normalized characteristic impedance of the series loss

stubs can be obtained from the above equations by making

the following textual substitutions: Go + Rs, a. -+ am and

Y. ~ 2.. CJ,and am are the equivalent electric and magnetic

conductivities and 20 = 1/Y. = \m.

22P
ipq = dpq = —

Z/Iq + Rsq + 2(Z. + 2P)

–Zsq + Rsq + 2(Z. + 2P)

Zsq + Rsq + 2(2. + 2P)

epq = gpq = hpq = lpq = O

‘Sqdpq, jpq ,.f,(l = ~

Rs
~dp,r,npq = mpq = 2P

—

III. NUMERICAL IRESULTS

A. TEM Wave Propagation

Fig. 1 shows a transverse electromagnetic wave normally

incident upon a lossy half space. We note the excellent

agreement between the results obtained via the TLM method
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Fig. 1. Transverse electromagnetic wave normally incident on a lossy hatf

space; .f = 15 GIZZ, e, = 10 –y3. aud ~, = 5 – jl for z ~ 19.875 rnrn.

along with the various nodes (HSCN I, HSCN II, and Johns’s

SCN), given as the solid lines, and the analytic solution, given

as the dashed lines.

B. Birefringent Lens

A birefringent lens is an anisotropic device used to change

the polarization of light [10]. Fig. 2 shows the passage of

a circularly polarised wave through a birefringent half-wave

plate, calculated using the TLM method and the three nodes.

The incident counterclockwise, (CCW) circularly polarized

wave is composed of E. and Ev components having equal

amplitudes Ez,naz = Ey,~az = 1/W but differing phase

shifts such that ox – $V = –7r/2. We note that the E,

component of the wave passes through the lens without
distortion; this is expected since Evv,, = 1. The Ez component,

however, is transmitted through the lens with a phase shift.

Upon emergence from the lens at x = 44mm, we note

that 4Z – rjv = 7r/2, thus producing a clockwise (CW)-

polarized wave, The ET component of the wave suffers
multiple reflections at the interfaces with the lens. These

multiple reflections reduce the amplitude of the emerging

component producing a slightly elliptical CW polarization at

the output of the lens. Usually, a thicker birefringent plate is

constructed from a material having Em.,- closer to air.

IV. CONCLUSION

A new hybrid symmetrical condensed TLM node has been

presented along with a reformulation of the existing hybrid
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Fig. 2. Counterclockwise, circularly polarized wave normally incident on

a birefringent lens; ~ = 15GHz, e~~,i- = 2, and evv,~ = 1 for
19.875mm < x < 44mm.

node to include anisotropic media. Results computed using

the TLM method along with the two hybrid nodes and Johns’s

node have been obtained. It has been found that all three nodes

provide similar results and that they agree well with analytic

solutions.
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