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A Pair of Hybrid Symmetrical
Condensed TLM Nodes

Pierre Berini, Student Member, IEEE, and Ke Wu, Senior Member, IEEE

Abstract—This letter reports the development of a new time-
domain hybrid symmetrical condensed TL.M node. The new node
can accommodate a graded mesh and model lossy anisotropic
media described by diagonal tensors. The generalisation of an
existing hybrid node to accommodate anisotropic media is also
presented. The two hybrid nodes are complementary and pro-
vide the same computational advantages over the symmetrical
condensed node originally proposed by Johns [1].

I. INTRODUCTION

N A HYBRID symmetrical condensed node (HSCN), the

characteristic impedance of the link lines are varied to
account for mesh grading and to model certain properties of
the medium. This has the desirable effect of reducing the total
number of stubs required by a generalised SCN and, in certain
instances, increasing the TLM time step compared to the stub-
loaded SCN originally proposed by Johns [1]. The maximum
TLM time step for the HSCN’s is related to the minimum node
dimension while the maximum TLM time step using Johns’s
SCN is dependant on the ratio of the largest to the smallest
grid dimension. The disadvantage of a hybrid node is that
scattering may take place at the connection between link lines
of neighboring nodes.

A parallel 2-D graded hybrid node was originally proposed
by Al-Mukhtar and Sitch [2], and the first 3-D HSCN was
reported by Scaramuzza and Lowery [3]. In both Al-Mukhtar
and Scaramuzza’s nodes, the characteristic admittance of the
link lines model the permeability of the medium and parallel
open-circuit stubs are used to model the permittivity; this type
of node will be referred to as a type I HSCN. Alternatively,
the characteristic impedance of the link lines could be varied to
model the permittivity of the medium and series short-circuit
stubs could be used to model the permeability; this type of
node will be referred to as a type II HSCN. In this paper,
the development of a generalized type Il HSCN is presented,
the type I HSCN is extended to include anisotropic media,
and numerical results obtained using the time domain TLM
method compare the two HSCN’s, Johns’s SCN [1], [4], [5]
and analytic solutions.

II. FORMULATION

Both HSCN’s presented in this paper share the geometry and
the numbering scheme of the node given in [1], [4], [5]. The
scattering of the voltage pulses at the center of the HSCN’s
is represented by the matrix S, given at the bottom of the
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next page. The elements of this matrix are obtained using the
technique presented in references [6], [7], [8] and are given
below for both HSCN’s.

A. Type I Hybrid Symmetrical Condensed Node

The type I HSCN models a diagonal permeability tensor
via the distributed inductance of the link lines, while the
distributed capacitance is chosen such that time synchronism
is maintained throughout the mesh. The characteristic admit-
tance of the link lines thus become a function of both the
permeability to be modelled and the grading of the mesh:

AA, AA, AA,
:u'wac,rAyAz ’ )U/yy,'r'AmAz ’ sz,rAmAy
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The normalized characteristic admittance Y is associated with
lines 4, 8, 5, and 7; Y, with lines 2, 9, 6, and 10 and Y, with
lines 3, 11, 12, and 1.

The additional capacitance required to model the permittiv-
ity tensor is provided via the open-circuit stubs that couple to
the electric field. The normalized characteristic admittance of
these stubs are:
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The elements of S, are found to be:
_Y

Y,
Gpq = ?prq —dpg, Cpg = ?ibpq +dpg—1

T
2Y,
Yo, + Gop +2(Y, + Y,)

kpg = epg = bpg =

2
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Lo _Yopb b Yo, —Gop, - 2(Y, +Y,)
pq = 9pg = Y, Pv pq_Y0p+Gop+2(Yr+Yq)

Mpg = YgRsqdpq, [pq = ipg = Jpg = Npg =0

The type I HSCN reduces to the node given in [9] if the
medium is isotropic and to the node given in [3] if the medium
is both isotropic and magnetically lossless.
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B. Type Il Hybrid Symmetrical Condensed Node

The type II HSCN models a diagonal permittivity tensor
via the distributed capacitance of the link lines, while the
distributed inductance is chosen such that time synchronism is
maintained throughout the mesh. The characteristic impedance
of the link lines thus become a function of both the permittivity
to be modelled and the grading of the mesh. They can be ob-
tained from (1) by making the following textual substitutions:
Y — Z and p — €. The normalized characteristic impedance
Z, is associated with lines 1, 12, 2, and 9; Z, with lines 4, 8,
3, and 11 and Z, with lines 6, 10, 5, and 7.

The additional inductance required to model the permeabil-
ity tensor is provided via the short-circuit stubs that couple to
the magnetic field. The normalized characteristic impedance of
these stubs are obtained from (2)—(4) by making the following
textual substitutions: Yo — Zs, e — pand p — €.

The elements of S, are found to be:

Apq = bpg — dpgs Cpg = bpg +dpg — 1

2
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C. Commonalities

For both HSCN’s, the indices p, g, r are defined as: p,q,r €
{z,y,2z} and v # p,q where z,y,z are subscripts of the
elements of S,. The length A; is chosen as the minimum
of all node dimensions A; = min{A,, Ay, A.}q k) this
will ensure that all open- or short-circuit stubs have a positive
characteristic admittance or impedarnce. The time step for both
HSCN’s is dependant on the minimum mesh dimension 4
and not on the ratio of the largest to the smallest grid spacing,
which sometimes leads to prohibitively small time steps [3].
Assuming that the grading is constant throughout the structure,
then scattering at the connection between link lines will not
occur in the type I HSCN if the permeability is constant or,
in the type IT HSCN, if the permittivity is constant.

Parallel and series matched stubs are used to model the
electric and magnetic losses of the medium. The normalized
characteristic admittance of the parallel loss stubs are:

o — o DB 1 AL
Or = Oer A, YvO’ Oy = Oey Ay Yo
Agy 1
GOZ = Uez-—‘-A—’z—?O

The normalized characteristic impedance of the series loss
stubs can be obtained from the above equations by making
the following textual substitutions: Go — Rs, 0. — o, and
Yy — Zy. 0. and oy, are the equivalent electric and magnetic
conductivities and Zo = 1/Yy = \/po/€o.

III. NUMERICAL RESULTS

A. TEM Wave Propagation

Fig. 1 shows a transverse electromagnetic wave normally

Npg = Mpq = ﬁ;_qdpq’ €pg = Gpg = hpg = lpg = 0 incident upon a lossy half space. We .note the excellent
f2 agreement between the results obtained via the TLM method
Sy =
r 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 7
1 Az by dyz bry —dyz Cxz Grz rz
2 bxy Oy dzy Cry —dzy bry  Gry —lzy
3 yz Ay z byz byz Cyz _dyz Gy= “‘iyz
4 byz Gy dyx —dyz Cyzx byz Gyzx iyr
5 dze Gzz bae Czx —dzx bz gz —lzp
6 dzy bzy Azy bzy _dzy Czy Yy ify
7 —dzx Czx bex Gzx dzx bex 9zx L
8 byz Cyz —dyz dyz  Gyz by Jyx ~iyz
9 bey Czy —dry Azy dey bry  Gay oy
10 —dzy bay Czy bay day  Gzy Gzy —iz
11 —dy. Cyz by by Gy dy= Gy Tyz
12 Crz by ~dyy by dy 2 Agzz 9xz —igz
13 €zy €z €xz €zy hzz
14 eyx €yz eyz €y hyz
15 €zy Czx €zy €z h.z
16 fzz __fyl' fyx _fzz jzx
17 —fzy Jay fey  —Jfazy Jzy
18 fyz ~fzz frz _fyz Jzz
19 kl‘y kﬂz k.TZ kﬁy lIZ’
20 kyx ky: ky- kya Iy
21 kzy kyx k:y ko lee
22 —Mzy NMyx —Myxz Mzz Nz
23 Moy —Mgy —May Magy Ny
124 —my, Mgy —Myy My:z Nyz |




246

E (V/m)
1 = T T T = T

\ :
5 E analytic

Er

analytic

-0.6 k- E!otal

-0.8 |

-1 1 N L ' !
0 0.005 0.01 0.015 0.02 0.025 0.03
Distance (m)

Fig. 1. Transverse electromagnetic wave normally incident on a lossy half
space; f = 15GHz, ¢, = 10— 33.and pr = 5 — j1 for x > 19.875mm.

along with the various nodes (HSCN I, HSCN II, and Johns’s
SCN), given as the solid lines, and the analytic solution, given
as the dashed lines.

B. Birefringent Lens

A birefringent lens is an anisotropic device used to change
the polarization of light [10]. Fig. 2 shows the passage of
a circularly polarised wave through a birefringent half-wave
plate, calculated using the TLM method and the three nodes.
The incident counterclockwise, (CCW) circularly polarized
wave is composed of E, and E, components having equal
amplitudes E; maz = Eymaz = 1/ V2 but differing phase
shifts such that ¢, — ¢, = —n/2. We note that the E,
component of the wave passes through the lens without
distortion; this is expected since €, » = 1. The E, component,
however, is transmitted through the lens with a phase shift.
Upon emergence from the lens at x = 44mm, we note
that ¢, — ¢, = w/2, thus producing a clockwise (CW)-
polarized wave. The L, component of the wave suffers
multiple reflections at the interfaces with the lens. These
multiple reflections reduce the amplitude of the emerging
component producing a slightly elliptical CW polarization at
the output of the lens. Usually, a thicker birefringent plate is
constructed from a material having e, » closer to air.

IV. CONCLUSION

A new hybrid symmetrical condensed TLLM node has been
presented along with a reformulation of the existing hybrid
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Fig. 2. Counterclockwise, circularly polarized wave normally incident on
a birefringent lens; f = 153G Hz, €xrr = 2, and €yy,r = 1 for
19.875mm < z < 4dmm.

node to include anisotropic media. Results computed using
the TLM method along with the two hybrid nodes and Johns’s
node have been obtained. It has been found that all three nodes
provide similar results and that they agree well with analytic
solutions.
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